Part Number Hot Search : 
CXD2408R R2500 MPX4250A 74HCT670 BZQ55C22 SAA5496H QD15XL09 LL5227B
Product Description
Full Text Search
 

To Download M54687FP Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
 MITSUBISHI
M54687FP
Bi-DIRECTIONAL MOTOR DRIVER WITH GOVERNOR
DESCRIPTION
The M54687FP is a semiconductor integrated circuit that is capable of directly controlling the rotating direction and rotating speed of a smallsize bi-directional motor rotating in both forward and reverse directions.
PIN CONFIGURATION (TOP VIEW)
Speed control 1 R input S input PSC1 R S GND L input Power supply L L-VCC 1 2 3 4 5 6 7 8 16 15 14 13 12 11 10 9 NC O2 Output 2 P-VCC Power supply O1 VR GND Output 1 High speed control
FEATURES
q Capable of controlling the speed in forward and reverse rotating directions q Capable of controlling the speed in high speed mode q Large output current drive (IO(max) =700mA) q Built-in clamp diode q Flat package (16P2N )
M54687FP
Speed control 2 PSC2
P-VCC Power supply
APPLICATION
Micro-cassette for phone-answering machine, AV equipment, and other general consumption appliances Outline 16P2N-A
NC: no connection
FUNCTION
The M54687FP is an IC that can control the forward rotation, reverse rotation and speed of small DC brush motor. For the basic operation of this IC, output modes are selected, as shown in the logic truth table, by entering appropriate H/L level into the R, L and S inputs. Two resistances are put between the output pin and the PSC pin and the resistance ratios are appropriately adjusted to perform the speed control. In addition to the above, speed control can be done by varying the voltage at VR pin, in the high speed mode.
LOGIC TRUTH TABLE
R H H L L H L H L Output Input L S O1 O2 H H H FG G LH H H H FG H LH G H L L HL L L OFF OFF LL HL Mode FF PLAY REW REV BRAKE STB
Forward rotation high speed governor
Forward rotation governor
Reverse rotation high speed governor
Reverse rotation governor Brake operation Standby mode output high imp. Reserved
G: Governor control output mode FG: Rotating speed controllable with the voltage at VR pin (However, the precision is worse than G.)
BLOCK DIAGRAM
Speed control 1 PSC1 1 High Speed control VR 14 Output 1 O1 15 Output 2 O2 10 Speed control 2 Power supply PSC2 VCC 8 7 9 16
Reference voltage
(-)
Activation circuit
(-)
Control circuit
2 R R input
6 L L input
3 S S input
4 5 12 13 GND
Constant voltage, Constant current
Reference voltage
MITSUBISHI
M54687FP
Bi-DIRECTIONAL MOTOR DRIVER WITH GOVERNOR
ABSOLUTE MAXIMUM RATINGS ( Ta=25C, unless otherwise noted )
Symbol VCC VI VO IOP IO Pd Topr Tstg Parameter Supply voltage Input voltage Output voltage Allowable motor rush current Continuous output current Power dissipation Operating temperature Storage temperature Conditions Ratings -0.5 - +14 -0.5 - VCC -0.5 - VCC+2 700 200 1.14 -20 - 75 -40 - 125 Unit V V V mA mA W C C
tON 100ms, duty of 1% or less. However, Pd must not exceed the maximum rating. When mounted in board
RECOMMENDED OPERATING CONDITION ( Ta=25C, unless otherwise noted)
Symbol VCC VIH VIL VR Parameter Supply voltage "H" input voltage "L" input voltage VR control voltage range Min. 6.0 2.0 0 0 Limits Typ. 9.0 Max. 13.0 VCC 0.4 VCC Unit V V V V
IO
200mA when FF/REW speed is controlled.
MITSUBISHI
M54687FP
Bi-DIRECTIONAL MOTOR DRIVER WITH GOVERNOR
ELECTRICAL CHARACTERISTICS ( Ta=25C, unless otherwise noted )
Symbol IO(leak) II VOH VOL ICC1 ICC2 ICC3 ICC4 Vref IB K Vref / VCC Vref K / VCC K Vref / IO Vref K / IO K Vref / Ta Vref K / Ta K Vref II Vref / VCC Vref Vref / IO Vref Vref / Ta Vref IB IR Parameter Output leak current Input current "H" output voltage "L" output voltage FF/REW PLAY/REV BRAKE STAND BY Reference voltage Bias current Current proportional constant Voltage characteristics Vref K Vref K Temperature characteristics Vref K Governor characteristics (II) FF*REW Reference voltage Test conditions VCC = 14V, VO = 14V Standby mode VI = 5.0V IO = -200mA, VR = 5.0V IO = 200mA, VR = 0V, Vpsc = 2.5V FF / REW / BRAKE mode Output open Output open Output open Min. Limits Typ. 0 0 0.4 VCC-1.2 VCC-0.9 - - - - - 0.95 0.7 18 0.22 5.0 5.0 35 0 1.0 1.2 20 0.1 0.2 0.02 0.01 0.01 0.01 2.0 3.0 0.2 0.1 0.7 0 1.3 -5.0 1.8 -20 Max. 100 1.0 - 0.5 8.0 8.0 48 10.0 1.05 1.7 22 Unit A mA V V mA mA mA A V mA - %/V %/V %/mA %/mA %/C %/C V %/V %/mA %/C mA A
Supply current
IO = 40mA VCC = 6.0 - 13V VCC = 6.0 - 13V IO = 40mA IO = 50 - 200mA IO = 50 - 200mA Ta = -20 - 75C Ta = -20 - 75C VR = 0.3V
Governor characteristics (I) PLAY*REV mode
Current characteristics
Voltage characteristics Current characteristics Temperature characteristics
VR = 0.3V VCC = 6.0 - 13V VR = 0.3V IO = 50 - 200mA VR = 0.3V Ta = -20 - 75C VR = 0.3V VR = 0V
Bias current VR input current
MITSUBISHI
M54687FP
Bi-DIRECTIONAL MOTOR DRIVER WITH GOVERNOR
APPLICATION EXAMPLE
* When the normal speed is set to 2000rpm, and the high speed is set to 3500rpm 2k
RS 0.1F
VCC = 9.0V RT 300
VCC = 5.0V PSC1 20k
RT M O1
/ / 5.6 k
10F O2 PSC2 VCC
VR
1k
Reference voltage
(-)
Activation circuit
(-)
Control circuit
P-G
R
L Control signal
S
Install at a position close to the IC, if possible.
Motor: Armature resistance Ra = 14 RT: The resistance of 300
, Generation constant Ka = 2.57 3000 is used for temperature compensation to take measures against hunting at low temperature.
Constant voltage, Constant current L-G
Reference voltage
MITSUBISHI
M54687FP
Bi-DIRECTIONAL MOTOR DRIVER WITH GOVERNOR Speed Control Method
(1) Speed Control Method I (See the application circuit drawing.) For PLAY/REV Rotation number can be expressed by the following formula: N= 1 {IB * RT+Vref (1+ RT )+la( RT -Ra)} * * * * * * (1) Ka RT+RS K Where: Motor generation constant: Ka, Motor armature resistance: Ra, Rotation number: N K: Current proportional constant, IB: PSC pin bias current, Ia:motor current RT, RS: External resistance In addition, to set the rotation number with RS, external resistance RT is generally set as follows: RT K x Ra For FF/REW Note that the rotation number is basically controlled with the same expression as formula (1) but different reference voltage Vref and different bias current IB are to be used. However, Vref = 5VR+0.5 (2) Speed Control Method II (to increase the motor rotation number)
RS1 RT1
(3) Speed Control Method III (to increase the precision of forward rotation and reverse rotation)
RT2
RS2
M
PSC1
O1
O2
PSC2
VR
VCC
R
L
S
L-G
P-G
RS
Control signal
RT M
RT
PSC1
O1
O2
PSC2
VR
VCC
R
L
S
L-G
P-G
The above two applications cannot make fine adjustments in forward rotation and reverse rotation (because the external resistance is shared with the forward rotation and reverse rotation). Fine adjustments can be made for each of forward rotation and reverse rotation if the external circuit is set as shown in the drawing above. This external circuit is also available to change the speed of forward and reverse rotation. The control method adopts the same formula as formula (1). However, the following relations must be satisfied: RT+RS RS1 or RS2 RT RT1 or RT2
Control signal
In the external circuit above, the voltage across motors is almost determined by the ratio of `RS+RT' to `RT' and, therefore, a value set for the voltage across motors is not so large. As method (1) of speed control I, the rotation number can be controlled. However, the following relations must be satisfied: RT RT+RS RS+RT RT
MITSUBISHI
M54687FP
Bi-DIRECTIONAL MOTOR DRIVER WITH GOVERNOR CAUTIONS
(1) Oscillation may take place with the setting of RT>K*Ra. Set R K * Ra. (2) Add a capacitor of 0.1F to the portion between PSCs to reduce brush noise of the motor. (3) Add a capacitor of 10F to the portion between VCC and GND to reduce brush noise and back electromotive noise of the motor. (4) At a low temperature, RT>K*Ra is set due to temperature characteristics of resistance Ra of the motor. When oscillation takes place, use resistance with a temperature coefficient for RT. (5) When the supply voltage is low, note that saturation of the output transistor of the IC may prevent the rotating speed for control. Taking into account motor noise etc., set constants in the following range. 2.0V VCC - (EC+Ia * Ra) RT = VCC - {RT * IB + Vref(1+ RT )+ K RS Ia}
TYPICAL CHARACTERISTICS
Thermal Derating (Absolute Maximum Rating)
2.0
Power Dissipation Pd (W)
1.5 When mounted in board 1.0
*
0.5
When the back electromotive force is large with the brakes applied, for example, malfunction may occur in internal parasitic Di. If flyback current of 1A or more flows, add Schottky Di to the portion between the output and the GND. When the IC is used at a high speed for PWM etc., note that switching of output results in delay of approx. 10s.
0 0 25 50 75 100
Operating Temperature Ta (C)


▲Up To Search▲   

 
Price & Availability of M54687FP

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X